In this model you will figure out how to make a straightforward number cruncher that can include, subtract, duplicate or partition contingent on the contribution from the client. 

To comprehend this precedent, you ought to have the learning of following Python programming points: 

Python Functions 

Python Function Arguments 

Python User-characterized Functions 

Source Code: Simple Caculator by Making Functions 

# Program make a straightforward number cruncher that can include, subtract, increase and partition utilizing capacities 

# This capacity includes two numbers 

def add(x, y): 

return x + y 

# This capacity subtracts two numbers 

def subtract(x, y): 

return x - y 

# This capacity increases two numbers 

def multiply(x, y): 

return x * y 

# This capacity isolates two numbers 

def divide(x, y): 

return x/y 

print("Select task.") 





# Take contribution from the client 

decision = input("Enter choice(1/2/3/4):") 

num1 = int(input("Enter first number: ")) 

num2 = int(input("Enter second number: ")) 

in the event that decision == '1': 

print(num1,"+",num2,"=", add(num1,num2)) 

How to Run Parallel Data Analysis in Python using Dask Dataframes

elif decision == '2': 

print(num1,"- ",num2,"=", subtract(num1,num2)) 

elif decision == '3': 

print(num1,"*",num2,"=", multiply(num1,num2)) 

elif decision == '4': 

print(num1,"/",num2,"=", divide(num1,num2)) 


print("Invalid input") 


Select activity. 





Enter choice(1/2/3/4): 3 

Enter first number: 15 

Enter second number: 14 

15 * 14 = 210 

In this program, we request that the client pick the coveted task. Choices 1, 2, 3 and 4 are substantial. Two numbers are taken and an if...elif...else spreading is utilized to execute a specific area. Client characterized capacities include(), subtract(), duplicate() and separation() assess individual activities.

Automated Machine Learning on the Cloud in Python